1 INTRODUCTION The System Engineering Manual (SEM) is a "how to" guidebook. The SEM defines major System Engineering (SE) elements and establishes best practices regarding application of these elements to the National Airspace System (NAS). The SEM is a selected compilation of those proven practices within the SE domain that are deemed most appropriate to analysis, planning, design, acquisition, lifecycle support, and management of Federal Aviation Administration (FAA) programs. There are many definitions of SE in textbooks, professional journals, and classrooms. The following definition has been selected for the SEM: A discipline that concentrates on the design and application of the whole (system) as distinct from the parts. It involves looking at a problem in its entirety, taking into account all the facets and all the variables and relating the social to the technical aspect. SE addresses translation of stakeholder needs into system requirements and facilitates the process by which the specification of systems and/or components satisfies those requirements. Although programs differ in underlying requirements, SE provides a logical sequence of steps toward deriving good requirements and transforming them into solutions regardless of the program's size or complexity. These steps generate a series of work products that specify characteristics of systems (at any level), demonstrate and document the traceability to stakeholder needs (expressed or implied), and define how the requirements are validated and the systems (and associated components) are verified. To maximize effectiveness, SE commences before any significant product development activities and continues throughout the program's lifecycle. When performed correctly, SE helps to ensure that program execution is right from the start. If problems are encountered, they are detected and resolved early. This process reduces program cost and risk. ## 1.1 Purpose The four primary purposes of this manual are to: - Define the FAA's integrated practice of SE to be used by any engineer or group performing a task requiring an SE approach; by design, this practice is compatible with all components of the agency and consistent with sound government and industry best policies and guidelines - Provide methods and tools that result in effective and consistent SE - Supply detailed information on work products of SE activities that are needed to ensure uniform and consistent high-quality products - Enable SE to participate in and support Program Management and its needs ### 1.2 Scope The SEM describes 12 major SE elements as they are applied within the FAA. The SEM supports the Acquisition Management System (AMS) by identifying the proper application of SE elements in the AMS decision and acquisition processes. Figure 1.2-1 shows the 12 SE elements. Figure 1.2-1. Federal Aviation Administration System Engineering Elements As a how-to manual for SE, the SEM defines the constituent SE elements to be performed throughout the program lifecycle. The term "program" is intended to mean projects of all sizes and complexity, ranging from the NAS to individual parts. While the SEM is primarily directed at NAS modernization, it is recommended that individual programs tailor the application of processes, tools, and techniques according to program requirements. Further, implementation of these processes are to be directed by the appropriate SE management authority designated in the NAS System Engineering Management Plan (SEMP) or, on a given program, by the Chief System Engineer or Program Manager. The SEM includes guidance on tailoring (see Section 3.5). The SEM defines the FAA SE elements as well as the work products generated from each SE element. The 12 elements appear in Table 1.2-1 along with each element's purpose or function. A 13th element listed provides for process management and maintenance of the other 12 elements. **Table 1.2-1. System Engineering Elements** | System Engineering Element | Purpose of Element | |---------------------------------------|---| | Integrated Technical Planning | Plans the SE efforts and products. | | Requirements Management | Identifies and manages the requirements that describe the desired characteristics of the system. | | Functional Analysis | Describes the functional characteristics (what the system needs to do) that are used to derive requirements. | | Synthesis | Transforms requirements into physical solutions. | | Trade Studies | Assists decisionmaking by analyzing and selecting the best-balanced solutions to requirements. | | Interface Management | Identifies and manages the interactions between segments within a system or interactions with other peer systems. | | Specialty Engineering | Analyzes the system, requirements, functions, solutions, and/or interfaces using specialized skills and tools. Assists in the derivation of requirements, synthesis of solutions, selection of alternatives, and validation and verification of requirements. | | Integrity of Analyses | Ensures that the analyses provide the required level of fidelity and accuracy. | | Risk Management | Identifies, analyzes, and manages the uncertainties of achieving program requirements by developing strategies to reduce the severity or likelihood of those uncertainties. | | Configuration Management | Establishes and maintains consistency and manages change in the system performance, functional, and physical attributes. | | Validation and Verification | Determines if system requirements are correct. Determines that the solution meets the validated requirements. | | Lifecycle Engineering | Identifies and manages requirements for system lifecycle attributes, including real estate management, deployment and transition, integrated logistics support, sustainment/technology evolution, and disposal. | | System Engineering Process Management | Manages and maintains SE processes to meet FAA goals. Gains agencywide skill and standardization by continuously improving the effectiveness and efficiency of SE processes and tools. | # 1.3 Organization of the Manual Chapter 1 contains the Purpose, Scope, Manual Organization, Relationship Between the SEM and the SEMP, System Engineering Process Descriptions, and Process-Based Management and System Engineering. The historical background and context for the SE practice appear in Chapter 2. Chapter 3 provides a fairly high-level description of the relationship between the SEM and each phase of the FAA AMS. A detailed discussion of each of the major SE elements and their interrelationships appears in Chapter 4. Also included is a correlation between each of the SE elements (with its associated Chapter 4 paragraph number) and the reference to the associated section of the integrated Capability Maturity Model (iCMM) (e.g., SEM 4.12; iCMM PA 08). The following appendices are included: - Appendix A: Acronyms - Appendix B: Glossary - Appendix C: Initial System Requirements Review Checklist - Appendix D: Concerns and Issues - Appendix E: Integrated Technical Planning Details - Appendix F: Acquisition Management System Lifecycle Phase and Associated System Engineering Element Work Products - Appendix G: Requirements Management Resources #### 1.4 Relationship Between the SEM and the SEMP The SEM and SEMP are designed to work together. The SEM answers SE questions related to what and how, while the SEMP answers SE questions related to what, who, when, and why (i.e., why a particular organization or program is implementing or not implementing a particular SE element versus the SEM's discussion regarding a SE element's purpose). The "what" or products and activities of SE directly connect them. This relationship between the SEM and SEMP appears in Figure 1.4-1. Figure 1.4-1. Relationship Between the System Engineering Manual and the System Engineering Management Plan ## 1.5 System Engineering Process Descriptions The SE process descriptions in Chapter 4 include the following information: - **Process Definition.** Included are the purpose for carrying out the specific SE process and a narrative description of the specific SE process. This narrative discusses the function for the process (what to do). Program implementers may use this information to tailor specific activities to align them with the development events of the program. - Process-Based Management (PBM) Charts. Each SE element section in Chapter 4 contains a standard template that uses PBM charts to describe the SE element process. The templates indicate the major steps of the SE process, inputs to the process and associated providers, possible outputs generated, and associated product customers (from an SE view). The SEM also identifies the supplying (inputs) and using (outputs) processes that are used during process implementation to establish necessary program communication, documentation, and review activities. The granularity of products, both input and output, depends on the phase of the AMS lifecycle to which the particular SE element being discussed is applied. For example, synthesis results in much greater solution development than during Mission Analysis. The process descriptions consist of all aspects of each SE process, including the need to design for safety as well as for affordability, performance, usability, operational suitability, and cost of ownership. On some programs, a given activity may be performed informally (e.g., in an engineer's notebook) or formally, with interim products under formal baseline control. Each SE process includes these major workflow tasks, which are also shown in PBM chart form. - How To Do It. The SEM discusses specific approaches or techniques for implementing each SE process and provides guidance for selecting the right approach for a given program phase. It summarizes the key points, focusing on the what and why as well as the how. - **Inputs.** This category includes information from external sources or other processes that initiates the process or is received during the conduct of the process. - Outputs. This category includes information developed during and by the conduct of the process. - Entrance Criteria. This category is what is required to start the process. - **Exit Criteria.** This category is what is required to complete the process and allow legitimate exit from the process. - **Metrics.** This category includes examples of metrics for measuring the level of performance for the process, as well as the work products generated by the process. - Methods/Tools. This category includes specific tools or methods that are necessary (or desirable) to efficiently implement the process as described. They also let the user know what is available within the AMS FAA Acquisition System Toolset (http://fast.faa.gov/). - **Examples.** This category includes examples of both SE work products and the standard templates for producing the SE work products. Examples may be contained either within a particular section of Chapter 4, an appendix to the SEM, or on the FAA's intranet, in which case a reference uniform resource locator (URL) is provided. - **References.** This category includes documents from the government, industry, and academia that cover relevant topics regarding that section. ## 1.6 Process-Based Management and System Engineering It is very difficult to develop a generic, top-level process model that reflects all interactions among the processes for the SE elements shown earlier in Table 1.2-1. The interactions and iterations between the SE elements may be different depending on the program under consideration. Chapter 3 contains a definition of the SE element interaction for each of the major phases of the AMS (i.e., Mission Analysis, Investment Analysis, Solution Implementation, In-service Management, and Disposal). In addition, Figure 3.1-1, System Engineering Functional N² Diagram, contains an N² diagram that depicts the interrelationships, inputs, outputs, and products from the related processes. As stated above, Chapter 4 contains a standard template that uses PBM charts to describe the SE element process.